

INFORMATION ÜBER DIE NEUFESTLEGUNG EINER FLUGROUTE

FLUGHAFEN WIEN-SCHWECHAT

Allgemein

Die vorliegenden Verfahren wurden von Austro Control gemäß § 120a LFG zur sicheren, geordneten und flüssigen Abwicklung des Flugverkehrs entwickelt. Hierbei wurde auf die Reduktion von den der Allgemeinheit aus dem Luftverkehr drohenden Auswirkungen, insbesondere auf eine möglichst geringe Immissionsbelastung, Rücksicht genommen.

Mit dieser Publikation möchten wir Ihnen die bevorstehenden Veränderungen bei den Anflugverfahren auf Piste 16 vorstellen. Es handelt sich hierbei um zusätzliche, lärmmindernde Anflugverfahren, welche in verkehrsarmen Zeiten während der Nacht zur Anwendung kommen sollen.

Anlass

Flexiblere Routengestaltungen inklusive spezieller Kurvensegmente ermöglichen es dem Luftfahrzeug, einem neuen Anflugpfad zu folgen und dadurch besiedelte Gebiete – soweit technisch möglich – zu vermeiden. Hierfür kommen 2 technische Konzepte zum Einsatz: PBN-to-ILS sowie RNP AR (Authorization Required).

Diese Verfahren ermöglichen es, dass Anflüge nicht ausschließlich einem langen, geraden Leitstrahl, wie beim Instrumentenlandesystem (ILS), folgen müssen, sondern erst kurz vor der Piste einschwenken und zum Landeanflug ansetzen können. Dank der modernen, satellitengestützten Navigationstechnik inklusive spezieller Kurvensegmente kann die Routengestaltung im Nahbereich des Flughafen Wiens so flexibler gestaltet werden.

Für beide technische Konzepte müssen Luftfahrzeuge in der Lage sein, gekurvte Verfahrensteile mit konstantem Radius zu fliegen. Auch während des Kurvenflugs kommt es daher kaum zu einer Abweichung des nominellen Flugweges.

Konzept 1: PBN-to-ILS

Der präzise, und lärmarme Anflug ist nahezu wetterunabhängig nutzbar und kann mit fast allen Flugzeugtypen geflogen werden. Das Anflugverfahren hat zudem den Vorteil, dass für Crews kein zusätzliches Training erforderlich ist und dass Luftfahrzeuge auf einem nicht genehmigungspflichtigen, satellitengestützten Anflugsegment, einschließlich spezieller Kurvensegmente, zum ILS geführt werden (deshalb "to ILS"), auf dem der letzte Teil des Anflugs erfolgt. Sehr viele Luftfahrzeuge sind für dieses Verfahren ausgestattet. Voraussetzung für dieses Verfahren ist eine Mindestlänge für den letzten, geraden Anflugteil, von 5 NM (~ 9 KM).

Konzept 2: RNP AR

Ein RNP AR Anflug ist ein hochpräziser, satellitengestützter Anflug, der es erlaubt, näher als in Konzept 1 auf die Landepiste einzudrehen und daher nochmals lärm- und emissionsoptimiertere Routen festzulegen. Diese Anflüge erfordern eine spezielle Genehmigung für Crew und Flugzeug, integrierte On-Board-Leistungsüberwachung und Warnfunktionen, um die Navigation innerhalb enger Sicherheitsbereiche zu gewährleisten. Die Anzahl an möglichen Nutzern ist im Vergleich zu einem Standardanflugverfahren oder dem oben erwähnten PBN-to-ILS aktuell derzeit noch geringer.

Planliche Darstellung der Flugrouten

Derzeitige beispielhafte gesamtheitliche Situation (24h) der Anflugführung Piste
16

Abbildung 1: Darstellung Flugspuren auf das Instrumentenlandesystem Piste 16

■ Geplantes Verfahren Piste 16 gemäß Konzept 1

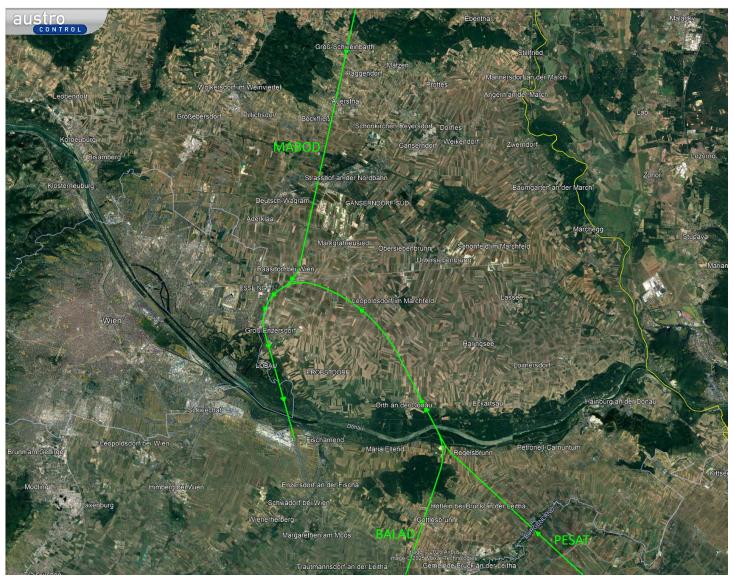


Abbildung 2: Darstellung Flugroute PBN-to-ILS Piste 16

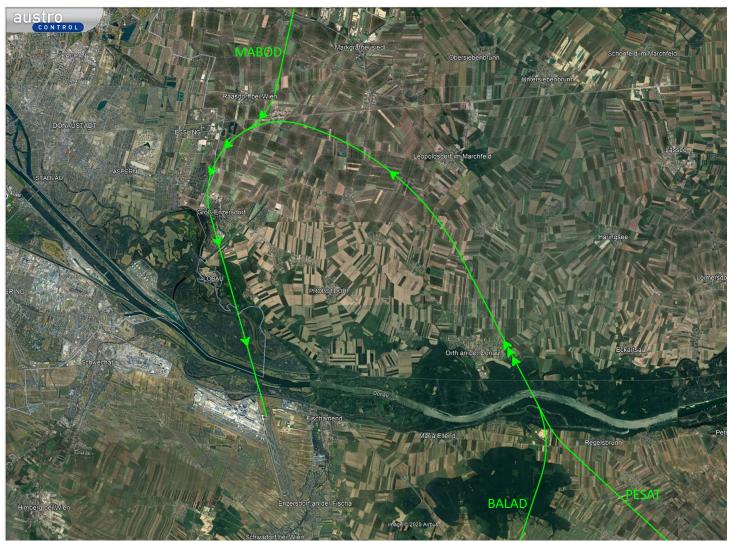


Abbildung 3: Vergrößerte Darstellung Flugroute PBN-to-ILS Piste 16

Geplantes Verfahren Piste 16 gemäß Konzept 2:



Abbildung 4: Darstellung Flugroute RNP AR Piste 16

Lärmanalyse

Im Zuge der Entwicklung der neuen Verfahren wurde eine Analyse in Bezug auf Lärmemissionen durchgeführt. Ziel dieser Untersuchung war es, die Auswirkungen der neuen "gekurvten Anflugtechniken" im Hinblick auf die Lärmbelastung mit dem herkömmlichen Standardanflug am Instrumentenlandesystem (ILS) zu vergleichen.

Die Lärmanalyse berücksichtigt folgende Parameter:

Lden - Tag-Abend-Nacht-Pegel in Dezibel (dB). Der Lden entspricht der Durchschnittsbelastung über 24 Stunden, wobei der Abend- und der Nachtzeitraum strenger beurteilt werden. Die Lden-Lärm-Metrik bietet einen Mechanismus, um die Auswirkungen von Umgebungslärm auf einfache und einheitliche Weise zu beschreiben.

Es wurde der Standardanflug am Instrumentenlandesystem 16 gegenüber den "gekurvten Anflugtechniken" auf die gleiche Piste verglichen.

Abbildung 5: Lärmkonturen ILS

Grundlage sind die durchschnittliche Anzahl an Landungen an einem Tag (24h) auf die Piste 16 in den Monaten mit dem meisten Flugverkehr (Mai – September 2024 und Mai – August 2025).

Als Referenzflugzeug wurde der Airbus A320ceo herangezogen.

Abbildung 6: Lärmkonturen PBN-to-ILS: BALAD

Abbildung 7: Lärmkonturen PBN-to-ILS: MABOD

Abbildung 8: Lärmkonturen PBN-to-ILS: PESAT

Abbildung 9: Lärmkonturen RNP AR: OST 1

Abbildung 10: Lärmkonturen RNP AR: OST 2

Abbildung 11: Lärmkonturen RNP AR: NORD

Zur besseren Einschätzung der Vorteile der neuen Anflugverfahren wurden die Ergebnisse der Lärmanalyse mit der Bevölkerungsdichte in den überflogenen Gebieten verglichen.

Grundlage sind die durchschnittliche Anzahl an Landungen an einem Tag (24h) auf die Piste 16 in den Monaten mit dem meisten Flugverkehr (Mai – September 2024 und Mai – August 2025).

BEVÖLKERUNG	ILS	PBN-to-ILS MABOD	PBN-to-ILS BALAD / PESAT	RNP AR OST 1	RNP AR OST 2	RNP AR NORD
Innerhalb der 50dB Lden Lärmkontur	37561	19192	13516	6158	7189	8682
Innerhalb der 60dB Lden Lärmkontur	13791	10159	10044	1239	1239	1695
Innerhalb der 70dB Lden Lärmkontur	0	0	0	0	0	0
Innerhalb der 80dB Lden Lärmkontur	0	0	0	0	0	0
GESAMT	51352	29351	23560	7397	8428	10377

Tabelle 1: Bevölkerungsvergleich

Durch den gezielten Einsatz der neuen Verfahren können dicht besiedelte Wohngebiete weitestgehend umflogen werden. Dies führt dazu, dass die Anzahl der direkt betroffenen Bewohner:innen deutlich reduziert wird.

Das Dokument wird nun für 6 Wochen zur öffentlichen Einsicht und Stellungnahme aufgelegt.

Abkürzungsverzeichnis / Fachbegriffe "einfach erklärt"

1 Fuß	0.3048 Meter		
ACG	Austro Control GmbH		
AIP	Aeronautical Information Publication		
ALT	Altitude		
AMDT	Amendment		
AMSL	Above Mean Sea Level		
ATC	Air Traffic Control		
ATM	Air Traffic Management		
ссо	Continuous Climb Operation		
CDO	Continuous Descent Operation		
FL	Flight Level		
ILS	Instrumentenlandesystem		
PBN	Performance Based Navigation		
RNP	Required Navigation Performance		
RWY	Runway		

Disclaimer

Der dargestellte laterale Track entspricht der nominellen Flugroute. Abweichungen im tatsächlichen Flugweg sind möglich, insbesondere in Kurvensegmenten.

Kontakt

https://www.austrocontrol.at/unternehmen/profil/umwelt/flugrouten

Impressum

Austro Control Österreichische Gesellschaft für Zivilluftfahrt mit beschränkter Haftung Schnirchgasse 17, 1030 Wien, Österreich